An optimization problem involving proximal quasi-contraction mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An optimization problem involving proximal quasi-contraction mappings

*Correspondence: [email protected] Department of Mathematics, King Saud University, Riyadh, Saudi Arabia Abstract Consider a non-self-mapping T : A→ B, where (A,B) is a pair of nonempty subsets of a metric space (X ,d). In this paper, we study the existence and uniqueness of solutions to the global optimization problem minx∈A d(x, Tx), where T belongs to the class of proximal quasi-contraction ...

متن کامل

On Monotone Ćirić Quasi–contraction Mappings

We prove the existence of fixed points of monotone quasi-contraction mappings in metric and modular metric spaces. This is the extension of Ran and Reurings fixed point theorem for monotone contraction mappings in partially ordered metric spaces to the case of quasicontraction mappings introduced by Ćirić. The proofs are based on Lemmas ?? and ??, which contain two crucial inequalities essentia...

متن کامل

Quasi-contraction Mappings in Modular Spaces

As a generalization to Banach contraction principle, Ćirić introduced the concept of quasi-contraction mappings. In this paper, we investigate these kind of mappings in modular function spaces without the ∆2-condition. In particular, we prove the existence of fixed points and discuss their uniqueness. 2000 Subject Classification: Primary 46E30; Secondary 47H09, 47H10.

متن کامل

Common best proximity points for $(psi-phi)$-generalized weak proximal contraction type mappings

In this paper, we introduce a pair of generalized proximal contraction mappings and prove the existence of a unique best proximity point for such mappings in a complete metric space. We provide examples to illustrate our result. Our result extends some of the results in the literature.

متن کامل

Proximal Quasi-Newton Methods for Convex Optimization

In [19], a general, inexact, e cient proximal quasi-Newton algorithm for composite optimization problems has been proposed and a sublinear global convergence rate has been established. In this paper, we analyze the convergence properties of this method, both in the exact and inexact setting, in the case when the objective function is strongly convex. We also investigate a practical variant of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2014

ISSN: 1687-1812

DOI: 10.1186/1687-1812-2014-141